Módulo de Apoyo Pedagógico

1) En la secuencia
$$\frac{2^0}{3^{-1}}$$
; $\frac{-2^1}{3^0}$; $\frac{2^2}{3^1}$; $\frac{-2^3}{3^2}$; el valor del sexto término es:

- 2) ¿Cuál de las siguientes expresiones es equivalente a $\frac{n^3}{n^{-4}}$?
- 3) El triple de $a^0 + 3a$ está representado por

4) Si
$$\frac{n^2 + n^2}{n^2 + n^2 + n^2} = 4$$
, entonces $n^3 =$

5) Si t = 5, ¿Cuál(es) de las siguientes expresiones representa(n) un número real?

1)
$$(3-t)^{-1}$$

II)
$$(3-t)^{-\frac{1}{2}}$$

III)
$$(3-t)^{-\frac{1}{3}}$$

- A) Sólo I
- B) Sólo I y II
- C) Sólo I y III
- D) Sólo II y III
- E) I, II y III

6)
$$\frac{2^{-1} - 3^{-1}}{2^{-1} \cdot 3^{-1}}$$

7)
$$\left(\frac{0.29}{0.029}\right)^{-3} \cdot \left(\frac{9.02}{0.0902}\right)^{2} \cdot \frac{1}{10} =$$

8) Si
$$a=2$$
, entonces
$$\frac{a^{-a}-a^a}{a^a}=$$

12)
$$\left(\frac{1}{2}\right)^{-1}:\left(\frac{1}{4}\right)^{-1}=$$

13) Si
$$p = \frac{1}{4}$$
, entonces al evaluar $p^{-1} + \left(-\frac{1}{p}\right)^{-1}$ se obtiene

14)
$$\frac{(-2)^{-3} \cdot (-0.25)^{-2}}{(-1.5)^{-3} \cdot 3^3} =$$

15)
$$\left[\left(2^{3}\right)^{-2}\right]^{0,5} \cdot \left[\left(0,5\right)^{0,75}\right]^{-4} =$$

16) Si x = -2, entonces el valor de $5x^3 - 3x^2 + 4x^{-2} + 16x^{-3}$ es:

17)
$$\frac{(-1)^{-9} \cdot (0.25)^{-3} \cdot 8^{-2}}{(-0.4)^{-2} \cdot 10^{-3}} =$$

18) Determina el valor de la expresión
$$k^{2x} + \left(\frac{1}{k}\right)^{-2x} + k^0$$
, si $k = 5$

- 19) Exprese como producto b^{n+3}
- 20) El producto de la siguiente operación $a^{(a+b)} \cdot b^{(a+b)} =$

21) Si
$$x=-2$$
 e $y=3$, entonces $\left(\frac{x}{y} - \frac{y}{x}\right)^{-1} =$

22) ¿Cuál es el valor de
$$\left(-\frac{1}{3^{-1}}\right)^{-3}$$
?

23) ¿Cuál es el valor de $5^{11} + 5^{11} + 5^{11} + 5^{11} + 5^{11}$?

24)
$$4^{27} + 4^{27} =$$

25) De acuerdo a la potencia $\left(-\frac{1}{3}\right)^x$, ¿Qué valor puede tomar x para que ésta sea mayor?